Given an array of integers arr, find the sum of the minimums of all contiguous subarrays of the array. Since the answer may be large, print the answer modulo 10^9 + 7.
Input Format
The first line contains a single integer n(size of the array) The second line contains n space integers that denote the elements of the array
Output Format
Print the sum of minimum of all subarrays
Example 1
Input
4 3 1 2 4
Output
17
Explanation
Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4]. Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Example 2
Input
5 11 81 94 43 3
Output
444
Constraints
1 <= arr.length <= 3 * 10^4 1 <= arr[i] <= 3 * 10^4
Solution:–
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { Scanner sc= new Scanner(System.in); int n= sc.nextInt(); int[] arr= new int[n]; for(int i=0; i<n; i++) { arr[i]= sc.nextInt(); } int[] left= new int[n]; int[] right= new int[n]; Stack<Integer> st= new Stack<>(); for(int i=0; i<n; i++) { while(!st.empty() && arr[st.peek()] >= arr[i]){ st.pop(); } if(st.empty()) { left[i]= i ; st.push(i); } else{ left[i]= i- st.peek()-1; st.push(i); } } Stack<Integer> sk= new Stack<>(); for(int i=n-1; i>=0; i--) { while(!sk.empty() && arr[sk.peek()] >arr[i]){ // case ''>'' sk.pop(); } if(sk.empty()) { right[i]= n-i-1; sk.push(i); } else { right[i]= sk.peek()-i-1; sk.push(i); } } long ans=0; int mod= 1000000007; for(int i=0; i<n; i++){ ans += (arr[i]*(left[i]+1)*(right[i]+1)) % mod; ans= ans%mod; } System.out.println(ans); } }
Add a Comment