Given a square matrix of size N, calculate the absolute difference between the sums of its diagonals.
Input Format
The first line contains a single integer N, the number of rows and columns in the square matrix .
Each of the next N lines describes a row, and consists of N space-separated integers .
Output Format
Print the absolute difference between the sums of the two diagonals of the matrix as a single integer.
Example 1
Input
3 11 2 4 4 5 6 10 8 -12
Output
15
Explanation:-
Sum across the primary diagonal: 11 + 5 + (- 12) = 4
Sum across the secondary diagonal: 4 + 5 + 10 = 19
Difference: |4 – 19| = 15
Example 2
Input
1 2 3 4 5 6 9 8 9
Output
2
Explanation:- The left-to-right diagonal sum =1+5+9=15 .
The right to left diagonal = 3+5+9 = 17.
Their absolute difference is |15-17| = 2.
Constraints
1 <= n <= 10^3
-10^3 <= mat[i][j] <=10^3
Note: |x| is the absolute value of x (|x| is always non negative for all x)
Solution of Diagonal Difference! in java:–
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main (String[] args) throws java.lang.Exception { //your code here Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int arr[][] = new int[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { arr[i][j]=sc.nextInt(); } } int sum=0; int flag=0; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { if(i==j) { sum=sum+arr[i][j]; } if(i+j==n-1) { flag=flag+arr[i][j]; } } } if(sum>flag) { System.out.println(sum-flag); } else{ System.out.println(flag-sum); } } }
Add a Comment