## Diagonal Difference! in java

Given a square matrix of size N, calculate the absolute difference between the sums of its diagonals.

### Input Format

The first line contains a single integer N, the number of rows and columns in the square matrix .

Each of the next N lines describes a row, and consists of N space-separated integers .

### Output Format

Print the absolute difference between the sums of the two diagonals of the matrix as a single integer.

### Example 1

Input

```3
11 2 4
4 5 6
10 8 -12
```

Output

15

Explanation:-

Sum across the primary diagonal: 11 + 5 + (- 12) = 4

Sum across the secondary diagonal: 4 + 5 + 10 = 19

Difference: |4 – 19| = 15

### Example 2

Input

```1 2 3
4 5 6
9 8 9
```

Output

```2
```

Explanation:- The left-to-right diagonal sum =1+5+9=15 .

The right to left diagonal = 3+5+9 = 17.

Their absolute difference is |15-17| = 2.

### Constraints

1 <= n <= 10^3

-10^3 <= mat[i][j] <=10^3

Note: |x| is the absolute value of x (|x| is always non negative for all x)

## Solution of Diagonal Difference! in java:–

```import java.util.*;
import java.lang.*;
import java.io.*;

public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();

int arr[][] = new int[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
arr[i][j]=sc.nextInt();
}
}

int sum=0;
int flag=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j)
{
sum=sum+arr[i][j];
}
if(i+j==n-1)
{
flag=flag+arr[i][j];
}
}
}
if(sum>flag)
{
System.out.println(sum-flag);
}
else{
System.out.println(flag-sum);
}

}
}```