Given a square matrix of size N, calculate the absolute difference between the sums of its diagonals.

### Input Format

The first line contains a single integer N, the number of rows and columns in the square matrix .

Each of the next N lines describes a row, and consists of N space-separated integers .

### Output Format

Print the absolute difference between the sums of the two diagonals of the matrix as a single integer.

### Example 1

**Input**

3 11 2 4 4 5 6 10 8 -12

**Output**

15

**Explanation:-**

Sum across the primary diagonal: 11 + 5 + (- 12) = 4

Sum across the secondary diagonal: 4 + 5 + 10 = 19

Difference: |4 – 19| = 15

### Example 2

**Input**

1 2 3 4 5 6 9 8 9

**Output**

2

**Explanation:-** The left-to-right diagonal sum =1+5+9=15 .

The right to left diagonal = 3+5+9 = 17.

Their absolute difference is |15-17| = 2.

### Constraints

1 <= n <= 10^3

-10^3 <= mat[i][j] <=10^3

Note: |x| is the absolute value of x (|x| is always non negative for all x)

## Solution of Diagonal Difference! in java:–

import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main (String[] args) throws java.lang.Exception { //your code here Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int arr[][] = new int[n][n]; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { arr[i][j]=sc.nextInt(); } } int sum=0; int flag=0; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { if(i==j) { sum=sum+arr[i][j]; } if(i+j==n-1) { flag=flag+arr[i][j]; } } } if(sum>flag) { System.out.println(sum-flag); } else{ System.out.println(flag-sum); } } }

## Add a Comment